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ABSTRACT

The performance of a sensor-blending scheme for two different bandwidth sen-

sors is significantly improved when a Kalman filter is used to blend the outputs

vice classical control methods. This Kalman filter signal blender is designed and

implemented in a computer program developed for this thesis. Several tracking sce-

narios are simulated and analyzed. These scenarios are representative of the input

expected into the sensors on a Space Based Laser.
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I. INTRODUCTION

A. GENERAL

The weapons being developed for the Strategic Defense Initiative require un-

precedented pointing accuracies. For the case of the Space Based Laser (SBL) and

Neutral Particle Beam, the pointing accuracy requirt-d is analogous to hitting a

beach ball on the Empire State Building with a laser on Pike's Peak in Colorado.

The problem does not end with being able to hit the beach ball: the laser has to illu-

minate the target for a specified period of time. The United States \rmy Strategic

Defense Command has a precision pointing test bed located near Denver, Colorado.

This facility is operated by the Martin Marietta Corporation. The test bed facility.

known as the Rapid Retargeting/Precision Pointing (R2P2) facility is the vehicle

through which the technologies required for the high pointing accuracies and rapid

retargeting are being developed and tested. The R2P2 facility is currently config-

ured to simulate the Space Based Laser, the inertial reference unit and the various

other SBL components.

The heart of the R2P2 facility and the SBL is the fine pointing system. The fine

pointing system's mission is to keep the line of sight of the weapon system pointed

at the target. Steering mirrors are used to control the inertial line of sight angle.

The error signal received by the steering mirrors can be treated as the difference of

two signals, target position command angle (0 < f < 0.5 Hz) minus the line of sight

feedback angle (0 < f < 40Hz). The angles include disturbances such as command

vehicle motion and beam expander structural vibration. The steering mirrors must



track the low frequency target and filter the high- and low-frequency disturbances

from the line of sight.

Presently, the low frequency portion of the steering mirror error signal is pro-

vided by the Alignment Inertial Reference (AIR) platform, Figure 1.1. Due to the

nature of the application and the type of sensor, the fine tracker operates at a low

sampling rate and cannot provide high frequency information. The proposed con-

cept is to use the AIR platform as a pseudo target, or cooperative target. It provides

a mirrored surface pointed at the target and located on the weapons system. An

alignment system marker beam is reflected by this surface and a sensor, other than

the fine tracker, is used to obtain line of sight information. This alignment sensor

does not have the low sample rate restriction and can be used to obtain high fre-

quency information. The command signal for the AIR platform is formed by a sum

of signals from the fine tracker, the alignment sensor and the AIR platform angle

sensor.

The Strategic Defense Command and Martin Marietta desire an alternative

approach for the fine pointing system on R2P2. The improvement, Figure 1.2,

involves eliminating the AIR platform from the loop. Low frequency target data is

obtained from the fine tracker, which samples at 50 lIz. A second signal is formed

by blending the output from two sensors that measure the beam expan. er angle.

a strap-down gyroscope and a magneto-hydrodynamic (MIlD) angular vibration

sensor. The strap-down gyro yields low frequency information while the MIiD is

designed to give high frequency observations. The difficulty with this scheme is

the blending of the two signals to produce a broad-band measurement of the beam

expander angle. The output of the alignment sensor is subtracted from the output of

the signal mixer to yield a high frequency line of sight angle measurement. A second



signal mixing network combines this signal with the low frequency information from

the fine tracker.

This research project focused on the mixing of the measurements from the two

sensors, the gyroscope and the MIID, in an effort to fulfill the stated requirements.

Those requirements, put forth by Martin Marietta, were:

1. Extremely accurate tracking of input signal.

2. Extremely fast lock on time, 20 ms or better.

3. Flatness in magnitude and phase for the combined low pass and high pass

sensors as shown in Figure 1.3.

4. Steep cutoff rates for the outputs of the individual compensating filters, to

minimize noise contributions from the individual sensors in their non-valid

regions of measurement.

5. A selectable blending frequency, selectable at any point between ,,, and ,g in

order to blend the sensors for minimum noise.

6. Minimal sensitivity of the compensating network to parameter variation in the

sensors.

7. Minimum number of poles and minimum DC gain in the compensating filters.

To meet these requirements, a Kalman filter was designed to iix the outputs

from the two sensors. The Kalman predicts the states of the sensors, discarding the

noise, based on previous measurements. The results should be the correct frequency

response and an extremely accurate tracking of OBX. The results of the Kalman

filter signal blending will be compared with the signal blending filter scheme that

3



0

V)~

010

L" (30.

.E

a)

4E



0

hV w
uru"

0

A 9 c'i

uI
u.

W4-

D M



A-101100 I0Z  103

Frequency(Hz)

-100.

~-200 -

-30(
1tY-2 10'1 10 10' 102 103

Frequency(Hz)

Figure 1.3: Desired Frequency Response for Systemn

Martin Marietta has devised, utilizing classic filter design. Different sensor ty-pes

will be compared with these results in an effort to further improve the design.
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II. PROBLEM STATEMENT

A. GENERAL

The filter used involves two sensors with different bandwidths, measuring a

common input. The filter then blends the two inputs using Kalman techniques.

The problem was developed using state space methods. Given the noise clut-

tered input angle, 0, we are interested in the noise-free measurement of this angle

over a broad band of frequencies. The state variables, (xl, x2, x3. .1, x5), for this

plant are 0, OG, OG, Ot and 9,% as defined in Table 2.1.

TABLE 2.1: STATE VARIABLE DEFINITIONS

xl True state to be tracked 0

x2 Gyroscope angle OG

x3 Gyroscope angle rate 0a

x4 MILD angle 0%f

x5 MHD angle rate

B. SYSTEM MODEL

The system to be modeled in this problem is that of an inertial reference unit

on the Space Based Laser. In the development of this work, the assumption was

made that all noise encountered is white noise.

7



The simplified block diagram for the system is

H L (S)

BX

HH (s)

Figure 2.1: Simplified Block Diagram for Sensors

The transfer functions for the two sensors were given by Martin Marietta [Ref. 1]

from manufacturer data and testing. The gyroscope's transfer function is

3947.8
/i(s) = 2S + 88.84,4s + 394t7.8 (2.1)

The MIlD transfer function is

,2 ( +2)

IlL(S) = s2 + 12.57s + 157.91 (2.2)

Figure 2.2 shows the frequency response of both sensors. It can be seen that both

sensors are second-order systems.

The continuous state space equations for the modeled system are

i= Ax + Bw (2.3)

8



50

-50

100 10'

Frequency(liz)

0

-- 100-

-200-

-300-

210110 10' 10

Frequency(Hiz)

Figure 2.2: Frequency Response of Both Sensors

9



y = CX + v (2.4)

where

" B = input driving function matrix

" C = measurement matrix

" w = system noise matrix

St = sensor noise.

and the state vector is 0

O,
X _. GO (2..5)

Using Equations 2.1 and 2.2 and the requirements for the phase and magnitude of

the output, the A matrix can be formed as

0 0 0 0 0
0 0 1 0 0

A 2 ,_1 0 0 (2.6)
0 0 0 0 1

,22.W-f 0 0 -. -- M

where

0 WG = gyro cutoff frequency

* ' = MIlD cutoff frequency

e = damping coefficient for each sensor

10



For the model, it is desired that the fastest reaction time possible is achieved.

To do this, the system is critically damped, ( 1. The cutoff frequencies come from

sensor specifications and testing. Equations 2.1 and 2.2 reflect the cutoff frequencies

and damping coefficient values given. The classical 2 nd order damped system has

the form
2

H(3) = s2 + 2(w + w 2  (2.7)

Discretizing the state equations yields the following discrete state space equa-

tions,

Xk+I = OXk + AU'k (2.8)

where

* Xk = parameter to be estimated (State Vector).

* O = state transition matrix which describes how the states of the dynamic

system are related.

* = state transition matrix for input driving function.

* Wk = system noise matrix.

From Equation 2.8 and the above assumptions, the 0 matrix is

1 0 0 0 0
4.83 x 10- 4  0.999 4.854 x 10- 4  0 0

1.913 -1.913 0.9886 0 0 Xk
1.966 x 10-' 0 0 0.999 4.96) x 10- 4

7.846 x 10-2 0 0 -7.846 x 10-2 0.9875
(2.9)

The system noise for the model comes from the input that the sensors are measuring.

This input will have noise from the vehicle, the mirrors and the beam expander. This

noise was modelled in accordance with the R2P2 observations by Martin Marietta.

11



C. MEASUREMENT MODEL

For a linear measurement process, the measurements are linearly related to the

state variables and can be modeled using the discrete linear measurement equation

from Equation 2.4,

Zk = HXk + t'k (2.10)

where

" zk = set of measurements

" H = observation matrix that gives the relationship between the measurements

and the state vector

* Xk = state vector

" t'k = measurement noise from the sensors

With the appropriate values for H, Equation 2.10 becomes

[ ] Ik + 00k (2.11)z= 0 0 0 1 1 -- v
2J

In this blending problem, the measurements are made of the beam expander

by the sensors that make up the inertial reference unit. The measurements are made

noisy by the noise inherent in the sensors. The sensors have been rigorously tested

and the power spectral densities have been computed by Martin Marietta. Figure

2.3 shows the computed noise spectra for the two sensors.

The noise from the sensors is a function of many variables including tem-

perature and bandwidth to be measured. Although this is generally a non-white,

non-gaussian noise process, it can be adequately described as a white noise process

over an extended period of time.

12
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The state and measurement equations are now ready to be implemented in the

simulation. What follows is the development of the Kalman filter equations that are

the heart of this exercise.

14



III. KALMAN FILTER THEORY

A. GENERAL

Filtering refers to the process of estimating the state vector at the current time,

based upon all past measurements. An optimal filter concentrates on optimizing a

specific performance measure used to approximate the quality of the estimate. The

Kaiman filter is the optimal filter in a class of linear filters that minimize the mean

square estimation error between actual and desired output. In other words, tile

Kalman filter attempts to minimize the elements along the main diagonal of the

state error covariance matrix. The Kalman filter has been used extensively in the

design of estimation models since it was first presented by Kalman and Bucy [Ref.

5] in 1960. The filter itself is actually a recursive algorithm for processing discrete

measurements or observations in an optimal manner. [Ref. 6:p. 10-1] A priori

knowledge of the state estimate and its error covariance. and the current observation

is required. The Kalman filter is a useful algorithm when both the system model

and the measurement model are linear functions of the state variables and these

models can be described by the equations

xk4+1 = OkXk + Awk (3.1)

Z I = Xk + L'k (3.2)

B. SYSTEM MODEL

The state space model of the systemn is given by Equation :3.1 and the inea-

surements are described by Equation 3.2. This is a standard state space matrix

15



representation for a system of linear differential equations. In 1"tuation 3.1. .k rep-

resents the physical state and Xk+i represents the next state of the discrete system.

The values 6 and A represent the discrete time state matrices. The value of

Xk is the true observed parameters of the state and t k and tLk are observation noise

and state expectation noise, respectively.

This systen is time invariant since neither p nor H is dependent on time.

The noise processes are considered to be stationary, independent, white gf;,:'sian

noise with zero mean. This assumes that white noise is an idealization of nature's

true state: however, it is an extremely good approximation for many systems. The

statistical properties of the noise are given below.

E [Uk] 0 (3.3)

E {wjwU,] Q8 jk (3.A)

EN -tk 0 (3. 5)

E u (3.6)

E It" =0 (3.7)

The matrices Q and R in Equations 3.4 and 3.6 are the covariance matrices

for the noise processes. For this system, the noise covariance matrices are non-zero

diagonal matrices, which denote the power present in the noise. This model will be

further discussed in Chapter 4.

C. LINEAR RECURSIVE FORM

Before deriving the filter equations, the form of the filter IMust first be deter-

mined. The form a-ssumed for most Kalman filters is shown in LVqiiations 3}. and

3.9.

-k+1i=k - (3k.k)

16



Xk+llk+l = k2ik+llk + k3zk+l (3.9)

The current estimate, k+11k+l, is a linear combination of the previous estimate.

ik+l1k, and the current observation. Zk+l. This form is chosen for its simplicity, but

Reference 4 demonstrates it is optimal for a linear system.

D. ERROR COVARIANCE

The error covariance matrices are described by Equations :3.10 and 3.11,

Pk+ljk = E f T+1Jkk+Ik} (3.10)

Pk+llk+l E [.k±'+IiT~lk (3.11)

These matrices give a feeling for the expected magnitude of the estimation error.

Their derivation can be found in Reference 6:1). 10S. The Kalman equations begin

to take shape when Equations 3.10 and 3.11 are combined,

Pk 1k = 0PkjkQ + Q . (3.12)

Additionally, writing Equation 3.11 and incorporating the equations found in Ref-

erence 2 in the development of the covariance matrix, we get

P+lk+l = (I - GI) Pk+l1k (I - Gl) T + GRGT (3.13)

where G is the Kalman gain matrix. All that remains is to find the value of this

Kalman Gain matrix.

E. RESIDUAL AND VARIANCE

The definition of the residual will be helpful in simplifying the notation re-

quired for the remainder of the proof. The basis for the residual and its variance

came from conversations with Steve Spehn [Ref. 7]. The residual is given by

rk+1 = zk+i - E [zk+li (3.14)

17



Since the estimate is unbiased, we see that

E [zk+,] = E [IXrk+l] + E [vk+l] (3.15)

E[zk+l] = Hik+1Ik (3.16)

By substitution and algebra, we get the final form of the residual,

rk+1 = Hik+1lk + t'k+l (3.17)

(This derivation is from Reference 7.)

The covariance of the residual is found to be

tar [rk+1] = E [rk+lrT+lI (3.18)

var [rk+l] = HPk+lIkHT + R (3.19)

Using the definition of the residual, the observation update equation can be written

as

'k+llk+l = -'k+llk + Grk+l (:3.20)

The Kalman Gain equations can now be derived.

F. KALMAN GAINS

Solving Equation 3.13 for G gives,

Gk+l = Pk+,lk HT (IIPk+llktfT + R) (:3.21)

Recognizing the form of the equation in parenthesis to be that of Equation 3.19, we

simplify to the final form.

Gk+l = Pk+llkHrvar [rk+ 1]- 1  (3.22)

Using techniques developed in Reference 3, we simplify Equation 3.13 to

Pk+llk+l = [I - Gk+1If] Pk+ijk (3.23)

is



G. KALMAN FILTER EQUATIONS

This derivation has provided a set of recursive equations. which give a time-

varying optimal gain matrix and a detected error analysis of the estimate. The

Kalman filter equations are given below.

-ik+llk = 0-iktk (3.24)

P+llk = OPklkO r + Q (3.25)

Gk+l = Pk+ljkfI T (HPk+ IkT + R) (3.26'

.rk+llk+l = -k+1k + Gk+l (zk+1 - H-t-k+llk) (3.27)

Pk+llk+l = (I - Gk+lH) Pk+llk (3.28)

These equations can be further simplified using the definitions of the residual and

covariance of the residual. This simplication will be incorporated in the simulations.

Since the Kalman equations are recursive, they are readily adaptable to computer

simulation. All that is required are the initial conditions:

.iolo, Initial estimate

Pol0 , Error covariance.

This a priori knowledge is essential to the Kalman process.

The Kalman equations are now ready to be implemented in estimating a nor-

mal system. The next step is to make the Kalman adaptable thereby increasing its

bandwidth. This will be accomplished by adding maneuver gatirig to the Kalman

filter.

19



IV. MANEUVER GATING

A. MAHALANOBIS DISTANCE

The Niahalanobis distance (MD) is a measure of the derivation of the obser-

vation from the estimate. The derivation of the MD is found in Reference 8. The

idea for this procedure was derived from Reference 7.

The Mahalanobis distance is found using the values for the residual and co-

variance of the residual, Equations :3.11 and 3.19,

11D= rk+l ar [rk+l] - 1 rk+ (.1)

The resulting scalar is compared with a desired threshold in the program. This

threshold was picked at iD = 4., which corresponds to the statistical 217 point for

the noise processes.

B. RESIDUAL GATING

Residual gating is the process by which the Kalman adapts itself to large jumps

in the observation. The system being tracked in this simulation can be expected

to have large, nearly step-shaped, changes in the observations ])eing tracked. (The

following derivation comes from Reference 7.)

A normal Kalman filter would observe this jump and initially considers it as

a noise perturbation. The Kalman will therefore ignore the jump, fu)r several steps.

If the large value persists, the filter will begin to react with speed dependent upon

the value of the covariance matrix, P, at the time.

This reaction, although a great benefit for slow-moving tracking situations. is

extremely restrictive for this system. The requirement for lock-on in 20 milliseconds
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demands a more proactive Kalman filter. Residual gating provides this proactive

behavior.

Residual gating uses the Mahalanobis Distance derived earlier as the -'gate-

for the ;ncrementation of the covariance matrix. There are two ways for a Kalman

filter to adapt, either by increasing the gain Gk+l or the covariance matrix, Pk. The

covariance matrix was selected as the means for adaptation. The gate is set up using

the 2o, value discussed earlier. A value of

MD > 4 (1.2)

results in the observation falling outside the gate and begiIis the adaptive incre-

menting of P,

Pkik = Fkl (.3)

The constant, F, was used to adaptively increase the last value of the covariance

matrix, Pkj1. The value of F was derived experimentally to obtain a value that

results irt optimal filter performance. F was found to cause little variance over a

wide range of values.

Through analysis, it was decided to use a gating reset of P010. This results in

some lag time in the filter, which is made up for by its faster lock-on time.

The next step in the design is to simulate the inputs and scenarios the system

will see. What follows are the various simulations used to tesL the filter's ability to

meet system requirements.
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V. SIMULATIONS

A. SCENARIOS

Several scenarios were developed for this simulation to test its applicability to

the sensor blending problem. In all scenarios, observation noise was present. State

excitation noise was varied.

1. Scenario One

This scenario introduced a 1 Ilz square wave with various noise levels into

the system. Figure 5.1 shows the input wave.

2. Scenario Two

This scenario introduced a 10 Ilz square wave into the system with various

noise levels. See Figure 5.2.

3. Scenario Three

This scenario introduced a 50 Ilz square wave into the system with various

noise levels. See Figure 5.3.

4. Scenario Four

The input for this scenario is a 100 Ilz square wave. This input is the

high limit provided by Martin Marietta. [Ref. 1] See Figure 5.1.

B. NOISE INPUTS

The noise inputs for the model were developed from input provided by Martin

Marietta [Ref. 1]. Figure 2.3 shows the noise spectral power values for the two

sensors, MHD and Gyro. The values used throughout the simulations for the sensor

noises were taken as the median from the graphs. The values were entered as c,

and cm, after conversion.
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The values entered for state excitation noise, W~k, were derived from the ex-

pctedl range of the fine tracking systemi. Varying the level Of 11'k ealsOne 10( t'st

the robustness of the model and filter. 'I'ie inean noise level was selected as 10-5

rad.

C. RESIDUAL GATING

A test case was run for Scenario One input without residlual gating. Figulre 5.5

shows the resuilts of a normal Kalmnan filter without residual gating. A\s can be seen,

the performance is unacceptable for the accuracy requirements statedl. It will serve

as a good reference for the IKalman filter uisedl in the reiiainder of thke si m;ilat IOns.

X1O0-3
6

5

4

0 2

-1

0 0.05 0.1 0.15 0.2

TIME(sec)

Figure 5.1: Scenario One
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Figure 5.2: Scenario Two

D. REQUIREMENT FOR FREQUENCY RESPONSE

The sponsor of this thesis, Martin Marietta, requested a frequency response of

the filtered system as part of their specifications [Ref. 2]. The Bode plot developed

from the model is a result of this requirement.

E. BODE FORMULATION

A bode plot is a plot of a system transfer functions response over a range of

frequencies. Martin Marietta desired a unity gain frequency response over the range

of interested frequencies, 0.01-100 l1z. [Ref. 1] A transfer function wvas generated us-

ing steps put forth in Reference 6 for a Wiener steady state optimal filter. A Wiener

filter is an optimal filter, identical to the Kalman, if the statistics are Gaussian. The

results of the derivation give a filter transfer function of the form

H(z) = [(z I- 0+ GI)-']GI

24



X1O-3

6

4

C 2

-2

-4

-60 I I I I

0 0.02 0.04 0.06 0.08 0.1

TIME(sec)

Figure 5.3: Scenario Three

The transfer function was derived using the program in Appendix B. This

transfer function was combined with the sensor transfer functions, from Figure 6.45,

and a Bode plot, Figure 6.46, was obtained.
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Figure 5.4: Scenario Four
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Figure 5.5: Scenario One, No Residual Gating
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VI. DISCUSSION OF RESULTS

A. GENERAL

All of the simulations conducted were done using an IBM-PC and the software

language PC-MATLAB. The program codes are contained in Appendices A and 13.

The results achieved could not be shown to completely satisfy the requirements put

forth by Martin Marietta. Specificially, the frequency response of the steady state

gain Kalman blended system did not meet the desired specifications. This incon-

sistency was resolved by the adaptive gating incorporated in the system designed.

This will be discussed in detail in Section VI-C.

B. KALMAN PERFORMANCE

The performance of the Kalman filter was evaluated through several steps of

increasing noise and frequency of the input. The filter design was for step and square

wave inp,:t, as per Martin Marietta's guidance [Ref. 1J. The Kalman is a Type 0

system, by design, so it will not be able to follow a ramp or siniusoid. It can be

modified to follow those two inputs, but with the penalty of not being a real-time

system any longer. The system this filter was built for. the R2lP2, is extremely

dependent on real-time results. Therefore, the Kalman was designed to be as fast

as possible.

The first simulation conducted was for an input of .5 mrad that drops to 0 mrad

at 0.05 seconds with Q=0 and R ,- 0. The R matrix could not be made to equal zero

due to MATLAB constraints. This simulation will act as a baseline for which the

others will be compared. Figure 6.1 shows the input and filter output. F1igure 6.2

illustrates the error between the actual input and the output of t he IXa1inan. Figure
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Figure 6.1: Baseline - XI Estimation for Model vs. Input

6.3 shows the value of the mean of the residual over the period of the simulation and

Figure 6.4 illustrates the ability of the filter to achieve rapid lock-on. The lock-on

gate used in these simulations is ± 20 ptrad. These graphs are of the first state (x )

of the system, which is the state we are concerned with. following. The no-noise

input scenario is unrealistic, but is effective in giving a baseline for the rest of the

analysis. With no noise, the Kalman is able to lock-on to the input in one time

step. The mean of the residual and lock-on time are two ways of checking Kalman

effectiveness. They will be used in analyzing the performance of the i'alman for the

scenarios.
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Figure 6.2: Baseline - Plot of Error Between Estimate and Input (Ni)
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Figure 6.3: Baseline - Mean of Error
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Figure 6.4: Baseline - System Lock-On Time

C. SCENARIO RESULTS

1. Scenario One

Three different runs were made for Scenario One, in which the noise

inputs were varied. The input signal was a 1 Ilz square wave. The first run had the

state noise covariance, Q, equal to 0 and the measurement noise covariance matrix

equal to the values obtained from Figure 2.3. Figures 6.5 to 6.8 show the simulation

results. Figures 6.9 to 6.12 show the results of the next run in which noise was

introduced into the Q matrix andft R- 0. Figure 6.13 and 6.16 illu.,trate the results

of entering representative noise into both the Q and ft matrices.

As would be expected, the mean of the residual and lock-on times were

progressively worse for each case. It is also obvious that state measurement noise,

R, is the dominant noise input in the filter. The results of the final run of this
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Figure 6.5: X1 Estimation for Model vs. Input

scenario are well within the desired specifications. The Kalman is locking on with

little deviation in 10-15 time steps.

2. Scenario Two

This scenario takes the basic system and applies a 10 llz square wave

input with amplitude of ± 5 mrad. The values for Q and /R will remain constant

for the remainder of the scenarios. Figures 6.17 to 6.20 show the results of entering

the 10 tIz wave into the Kalman.

For this input, the Kalman performs exceptionally well Lock-on, Figure

6.20, occurs in less than 20 time steps and the mean of the residual, Figure 6.19,

and the error, Figure 6.18, are extremely low.

3. Scenario Three

Scenario Three applied a 50 Ilz square wave into the IKahman. This

frequency of input appears to tax the Kalman's ability to follow an input. Figure
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Figure 6.7: Mean of Error
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Figure 6.8: System Lock-On Time
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Figure 6.9: Xl Estimation for Model vs. Input

33



X1 ()3 I

4

2

0 0.05 0.1 0.15 0.2

TIME (sec)

Figure 6.10: Plot of Error Between Estimate and Input (X1)

4XJO-17

2-

0

.-

-4-

0o 0.05 0 .1 0.15 0.2

TIM E(sec)

Figure 6.11: Mean of Error

3-1



1.2

1

0.8

0.6

0.4

0.2

01

-0.2 I

0 0.05 0.1 0.15 0.2

TIME (sec)

Figure 6.12: System Lock-On Time
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Figure 6.13: XI Estimation for Model vs. Input
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Figure 6.14: Plot of Error Between Estimate and Input (X1)
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Figure 6.16: System Lock-On Time
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Figure 6.17: Xi Estimation for Model vs. Input
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Figure 6.19: Mean of Error
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Figure 6.20: System Lock-On Time

6.21 shows the Kalman trying to track the input. The error graph, Figure 6.22,

shows the output gets close to the input very rapidly, but does not lock-on, Figure

6.24, and stay there. Partial lock-on is achieved, but with the inplut stepping every

20 time steps, the Kalman has great difficulty getting the covariance matrix and

gains down. There appears to be a credible performance by the Kalnan at this

point, but it is pushing its a*bilities with the present specified sample rate of 2 kllz.

4. Scenario Four

A 100 i1z, 5 mrad square wave was input into the IKalmaii. This was the

specified range for the blending filter given by Reference 1. Figures 6.25 and 6.28

show the Kalman's inability to follow an input of this high of a frequency. A 100

Iz wave calls for a step up or down every 10 time steps. In other words, t! e input

goes through two complete periods in the required lock-on time of 20 insec. As with

Scenario Three, a much higher sample time is needed for the INalman to track this
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Figure 6.21: Xi Estimation for Model vs. Input
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Figure 6.24: System Lock-On Time

41



X10-3

TEl IN UT()

2 "  :ILT UTUT:)

0- oise le- 5 Rid

< -2-

4-

-6-

0.01 0.02 0.03 0.04 0.05

TIME (sec)

Figure 6.25: X1 Estimation for Model vs. Input

frequency of input. The zero mean error, Figure 6.27. results from how the mean is

computed in the program. The program allows for a settling time of 13 time steps

after gating. The 100 Ilz wave causes the filter to gate every 10 time steps. The

mean cannot be computed and remains zero.

D. NOISE VARIATIONS

In order to verify the filter's insensitivity to noise, Scenario Two was modified

with various levels of state noise and measurement noise.

The first simulation decreased the values in the Q matrix by an order of mag-

nitude. As shown in Figures 6.29 through 6.32, this had little or no effect on the

outputs when compared to Figures 6.17 to 6.20.

The next three runs involved varying the R matrix. The R matrix was the noise

input most easily influenced in the system. Variations in electrical current to the
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Figure 6.28: System Lock-On Time

sensors or mis;dignment of components are two ways that could increase the sensor

noise. To increase the values in tile Q matrix would require a failure somewhere in

the R2P2 damping mechanisms or, in real life, an impact on the structure in space.

Therefore, the next three simulations involved increasing the magnitude of the

noise elements V"G and VA! of the R matrix by factors of 2, 5, and 10. The resulting

graphs are shown in Figures 6.33 through 6.14. The progression of the simulations

show that the system can handle up to an order of magnitude increase in noise in

both sensors and still function. Figures 6.41 and 6.44 show that the factor of 10

increase does push the system to the limits of its desired capabili'ies. Figures 6.33

through 6.40 show that the system performs quite well for 2 and 5 times the noise

input.
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Figure 6.29: X1 Estimation for Model vs. Input

E. FREQUENCY RESPONSE

The final portion of the analysis of the Kalman filtered system was the fre-

quency response. As stated earlier, a flat response over the interval 0.01-100 lIlz

was desired. The frequency response of Martin larietta's classical blending system,

Figure 6.4.5, is shown in Figure G.,6. The frequency response for the steady state

gain Kalman filter is shown in Figure 6.47. The Kalman's frequency response for

the steady-state gains does not meet specifications. Due to the adaptive gating de-

signed into the Kalman filter, it will not reach the steady-state gtin values utilized

in the Wiener development under normal conditions. With any kind of input, the

gains will be adapting continually. The steady-state Kalman approximation meets

the required error requirements. The adapting that occurs increases the bandwidth

to the desired range, thereby fulfilling the requirements.
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Figure 6.32: System Lock-On Time
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Figure 6.33: Xi Estimation for Model vs. Input
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0.03

0.2-STEP INPUT()

FILTER OUTPUT()

z0.01 Noise le-005 Rad

S 0-

-0.01

~02 0.05 0.1 0.15 0.2

TIME (sec)

Figure 6.41: VI Estimation for Mlodel vs. Input



0.02

0.01

-0.01

0.02I0 0.05 0.1 0.15 0.2

TIME (sec)

Figure 6.42: Plot of Error Between Estimate and Input (X1)

6xl 0-6

4-
06

-2

-4- -

-6-

0 0.05 0.1 0.15 0.2
TIME(sec)

Figure 6.43: Mean of Error

52



1.2

1

0.8-

0.6-

0.4-

0.2-

0-

-0.21 I

0.05 0.1 0.15 0.2

TIME (sec)
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VII. CONCLUSION

The Bode diagram for the steady-state Kalman filter clearly shows that a

steady-state gain filter does not meet the bandwidth requirements for the blender.

If a steady-state Kalman filter had been used, the blending scheme proposed would

not have functioned properly. But with an adaptive gate Kalman filter, the signal

blender achieves the desired bandwidth. This is shown in the various simulations

conducted. The purpose of an adaptive INalmnan is to adapt the bandwidth of the

system it is estimating. The Bode shown is just an approximation of the Kalman

filter developed. It is a snapshot at a point in time of the adaptive filter. Devel-

oping a frequency response for an adaptive Kalman filter is a possibility for further

research.

For speed and accuracy, the Kalman is vastly superior to the classical blending

scheme. Figure 7.1 shows the results of a 1 Hz square wave input into the Martin

Marietta system. The results from Scenario One are orders of magnitude better.

The adaptive gating approach used in this design is very versatile in its ap-

plication. Since time response was a high priority, this versatility was sacrificed to

a degree. By adjusting the gate and factor, F, the Kalman filter can be adapted

to follow any transient input. But, the faster the adaptation, the poorer the noise

filtering the transient.

Overall, the Kalman filter is superior to the classical approach to blending

two signals. For speed and accuracy, it is orders of magnitude better. With a few

modifications, it can be made to follow any input.
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APPENDIX A: MAIN PROGRAM AND
INPUT FILES

All of the simulations for this project were run on IBM-PC class computers

using the matrix maniplulation language MATLAB, version 3.5f. This appendix

contains the source code for all of the functions written in support of this project.

Only minor programming experience is required to understand these files.

While MATLAB is similar to Fortran. M.ATL.\B's control st ructures are inuclh less

complex. Comments are started by the percent sign (V ) and cont ivie to the end of

the line.

To aid the reader in scanning and retyping these functions. each file is started

on a new page. Although an analysis of the workings Uf these files is not necessary

to understand this report, the curious (or skeptical) reader is highly encouraged to

examine them closely.

The author neither claims nor desires to hold any copyright privileges on the

source code. Written requests for the source code on computer disk should be sent

either to the author or to Professor Harold A. Titus. Address information can be

found in the Initial Distribution List at the end of this report.

All of the files listed in the second section of this appendix provide general

support for the main files listed in the first section. These -upport files are not

specific to the simulations run for this report, but can be used for a variety of

purposes.
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% if### ###i###############if# #if##i#i#f####### #f#######f#####
% # if
% # THESIST5.M 30 JAN 90 #% # #f

i# MATLAB Simulation of the Beam Expander Inertial Reference #
% # Unit for the Rapid Retargeting/Precision Pointing (R2/P2) #

# System #
% # Before running this simulation the length for the #
% # simulation in seconds must be defined as the variable #
% # 'kmax', and the sampling interval is defined as 'dt'. #

# The program uses a adaptive gate Kalman filter to #
% # blend the output of two different sensors. The sensors #
% # are a MagnetoHyrodynamic rate sensor and Singer Rate #
% # Gyroscope. #
% # This program tracks square waves of different #
% # frequencies. #
% if i
% #### f##i##### # # ###if### # if# f ii### # #fii## ## if######## iif###### iif######if#i

delete bx.met % delete previous meta file
delete output6.met
clear;
clg;

% * * IINERTIAL REFERENCE UNIT

% The IRU is made up of two sensors. A strap down gyro and a
% Magneto HydroDynamic rate sensor.

**** Input Constants

b = 1000*2*pi; %end break freq
wg = 10.0*2*pi; %gyro break freq down
wm = 2.0*2*pi; %MHD break freq up
zeta = 1.0; %damping ratio
dt = 0.0005; %sample rate for system
kmax = 0.20/dt+l;
I = eye(5);
date= 26;
%Wg = le-5; % State noise for gyro
Wg = 0;
%Wm = le-5;
Wm = 0;

% ****** Input State Matrices For Sensors

AS = zeros(5,5); %initialize matrix at zero
BS = (0;0;Wg;0;Wm); %B matrix
ZS = zeros(2,5); %initialize observer matrix

% *Enter Values Into A Matrix
%
AS(l,l) = 0;
AS(2,3) = 1;
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AS(J,l) = wg^2;
AS(3,2) = -g2
AS(3,3) = -2*zeta*wg;
AS(4,5) = 1;
AS(5,l) = wm-2;
AS(5,4) = -wm^2;
AS(5,5) = -2*zeta*wm;

Enter Values Into observer Matrix

ZS(1,2) = 1;
ZS(2,4) = 1;
ZS(2,5) = .5;
1i = ZS

** Build Observer Matrix *

Discretize State Equations

fphi,del] c2d(AS,BS,dt); %Discretize states

% Construct Kalmnan Filter Equations

** Build State Noise Error Matrix

wl = 0;
w2 = le-2;
w3 = 5e-5;
w4= le-6;

w5 = le-5;

Q - wl^2*eye(5)
q = 0;%le-5;

** Build Measurement Noise Matrix *

avg =,1.237e-6;
avm =75.0e-6;

vg =le-l0*avg;

vm =le-10*avm;

v = [vg yin)';

R = zeros(2); %R matrix values
R(l,l) = vg"2;
R(2,2) = vm"2;

S Set Initial Error Covariance Matrix *

P 1 elO*eye(5);
PO P;

*** Build Kalman Equations **

y =zeros(2,kmax);
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m = zeros(5,kmfax);
tsql;

for i =l:kmax,
y(: ,i)= l*fC: ,i)+v.*rafld(v);

end

time =zeros(l,kmax);
time(l) = 0;
mr = zeros(2,kmax);
Xhat = zeros(5,kmax);
Xhat(:,l) = (0 0 0 0 01'; %Initial estimate of states

k wait. = 0;

mean r = [0;0]; %mean of the residual

for k=2:kmax;
Xhat(:,k) = phi*XhatC:,k-l)+del; %X(kA-1/k)

while 1
resid = y(:,k)-11*Xhat(:,k-l); %ainc ofteriul

vresid= fPHR;%aineoth eill

md2 = residl/vresid*resid; %Mahalanobis distance

if md2 < 4, %gating check

break;
else

P= PO; % PCk/k)
k wait = 0;
mean-r = 0*mean r;
mr(:,k) = mean_r;

end
end
k -wait = k-wait. + 1;

G = P*(H)'/vresid; %Kalman Gains G(k+l)

P = (I-G*ll)*P; %P(k/k)

P = phi*P*(phi)'+Q; %P(k+l/k)

Xhat (: ,k) =Xhat (: ,k) +G* (y C: ,k) H*XhatC: , k)) ; %X (k+l/k~l)

if k wait >= 13
kw = k-wait - 13;

mean -r =kw/(kw+l)*fean-r + 1/(kw+l)*resid;
mr(:,k) =mean_r;

end
time (k) =time (k-i) +dt;
home, k

end

%* Calculate the Error

error =m(l,:)-Xhat(l,:);

errg m~l,:)-Xhat(
2 ,:)

errm m(1,:)-Xhat(
4 ,:)

**Lock on Check *

for j=l:kmax,
if abs(error(j))<=' 2e-5,

lo(j) =0;
else

lo(j) = 1.0;
end;
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end;
subplot(211),plot(time,m(l,:),tine,Xhat(l,:),':')
title('X1 ESTIMATION FOR MODEL VS. INPUT')
xlabel('TIME Csec)'),ylabe1('PRADIANS')
gtext('STEP INPUT (-) ')
qtext('FILTER OUTPUT (:) ')
gtextU'INoise ',num2str(q),' Pad')
subplot(212),plot(tinme,error),title('PLOT OF ERROR BETWEEN ESTIMATE AND INPUT (X
xlabel('TIME (sec)'),ylabelC'RADIANS')
meta output2
pause

%title('XHAT 2 INPUT')
%plot(time,errg),title('PLOT OF ERROR BETWEEN ESTIMATE AND INPUT X21)
%xlabel('TIME (sec)'),ylabel('RADIANS')
%mneta
%pause
%plot(time,rn(l,:),time,Xhat(4,:),':')

* %title('XHAT 4 INPUT')
%plot(time,errm),titleC'PLOT OF ERROR BETWEEN ESTIMATE AND INPUT X41)
%xlabel('TIME (sec)'),ylabelC'RADIANS')
%meta

* plot(time,mr(l,:)),title('MEAN OF ERROR'),xlabelC'TIME')
axis((0 .20 -0.2 1.2));
plot(time,lo),title('SYSTEM LOCK ON TIME')
xlabel('TIME (sec)')
meta
pause
cig;
axis((0 .20 -5e-5 5e-5]);
plot(time,error),title('PLOT OF ERROR BETWEEN ESTIMATE AND INPUT CXl)')
xlabel TIME Csec)'),ylabel('RADIANS')
meta
axis;
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~ # # # # # # # # ## # # # ## ### ## # ### # ## # # # # ### # ## #

% # TSQl.M 25 JAN 90 #

% # MATLAB Simulation of the Beam Expander Inertial Reference #

# Unit for the Rapid Retargeting/Precision Pointing (R2/P2) #

% # System
# Before running this simulation the length for the #
# simulation in seconds must be defined as the variable #

% # 'tmax', the sampling interval is defined as 'dt'. #
% # This program generates a step to be input into #

# I THESIST5.M. #

% Bul SqaeWv nu

1 Ii#,#I ##i######III# ### #######I####I####I######I##I#
%
%
%
%
dt=0.0005; %sample rate for system
kmax=0. 20/dt+l;
%
%
% *** Build Square Wave Input *~**

y = zeros(2,kmax);

n = zeros(5,kmax);

for i= l:kmax;
if i<=100,

state C.005 .005 0 .005 0]';
else
state = (0 0 0 0 0]';

end
f(:,i)= state;
m(:,i) = state;

end
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I

# # # ## ### #### ################# ####### ######## #

% I TSQ10.M 25 JAN 90

I U MATLAB Simulation of the Beam Expander Inertial Reference
% H Unit for the Rapid Retargeting/Precision Pointing (R2/P2) #
% N System H
% # Before running this simulation the length for the H
% # simulation in seconds must be defined as the variable #

# N 'tmax', the sampling interval is defined as 'dt'. #
# This program generates a 10 Hz square wave to be #
# H input into TIESIST.M. #
# # #4# # ######4##### # # ###4### ### ##### ##

%

dt0% 05 Build Squar Wave systet

y = zeros(2,kmax);
m = zeros (5, kmax)

for i= l:kmax;
if i<=100,

state = [.005 .005 0 .005 0]';
elseif i<=200

state = -1"[.005 .005 0 .005 0]';
elseif i<=300

state = [.005 .005 0 .005 C]';
elseif i<=400

state = -1"[.005 .005 0 .005 0]';
elseif i<=500

state= [.005 .005 0 .005 0]';
elseif i<=600

state = -1"[.005 .005 0 .005 0]';
elseif i<=700

state= (.005 .005 0 .005 0]';
elseif i<=800

state = -1*[.005 .005 0 .005 0]';
elseif i<=900

state= [.005 .005 0 .005 0]';
else

state = -1"[.005 .005 0 .005 0]':
end
f(:,i)= state;
m(:,i) = state;

end
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%##U############################################# ######## ######

% I TSQ50.M 25 JAN 90 #% # I
% I MATLAB Simulation of the Beam Expander Inertial Reference 0
% # Unit for the Rapid Retargeting/Precision Pointing (R2/P2) #
% # System #
% I Before running this simulation the length for the #
% # simulation in seconds must be defined as the variable #

# I 'tmax', the sampling interval is defined as 'dt'. #
% # This program generates a 50 Hz square wave to be #
% # input into THESIST.M. #
% # I
% #####################I###I###############

dt=0.0005; %sample rate for system
kmax=0.10/dt+l;

% *** Build Square Wave Input ****
y = zeros(2,kmax);
m = zeros(5,kmax);

for i= l:kmax;
if i<=20,

state = (.005 .005 0 .005 0]';
elseif i<=40

state = -1*(.005 .005 0 .005 0]';
elseif i<=60

state = (.005 .005 0 .005 0]';
elseif i<=80

state = -1*(.005 .005 0 .005 0]';
elseif i<=100

state= (.005 .005 0 .005 0]';
elseif i<=120

state = -1*[.005 .005 0 .005 0]';
elseif i<=140

state= [.005 .005 0 .005 0]';
elseif i<=160

state = -1*[.005 .005 0 .005 0]';
elseif i<=180

state= [.005 .005 0 .005 0]';
else

state = -1*[.005 .005 0 .005 0]';
end
f(:,i)= state;
m(:,i) = state;

end
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% 4###

% I TSQI0O.M 25 JAN 90 #% # 4
% # MATLAB Simulation of the Beam Expander Inertial Reference #
% # Unit for the Rapid Retargeting/Precision Pointing (R2/P2) #
% # System #
% # Before running this simulation the length for the #
% 4 simulation in seconds must be defined as the variable #
% # 'tmax', the sampling interval is defined as 'dt'. #
% # This program generates a 100 Hz square wave to be #
% 4 input into THESIST.M. #% I #
% 41#1$#114#II #### I##########i####I ####### # ##### II I###

dt=0.0005; %sample rate for system
kmax=0.05/dt+l;

% Build Square Wave Input ****
y = zeros(2,kmax) ;
m = zeros(5,kmax);

for i= l:kmax;
if i<=10,

state = (.005 .005 0 .005 0]';
elseif i<=20

state = -1"[.005 .005 0 .005 0]';
elseif i<=30

state = [.005 .005 0 .005 03';
elseif i<=40
state = -1*[.005 .005 0 .005 0]';

elseif i<=50
state= (.005 .005 0 .005 0]';

elseif i<=60
state = -1*[.005 .005 0 .005 0]';

elseif i<=70
state= [.005 .005 0 .005 0)';

elseif i<=80
state = -1*[.005 .005 0 .005 0]';

elseif i<=90
state= (.005 .005 0 .005 0)';

else
state = -1,[.005 .005 0 .005 0]';

end
f(:,i)= state;
m(:,i) = state;

end
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APPENDIX B: BODE PROGRAMS

This appendix contains the programs used to compute the Bode diagrams

contained in the main body of the thesis.
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% THESBDE.M 1 NOV 89

% MATLAB simulation of Kalman Filter signal blending
% scheme. Developed by the Terry J Bauer, CPT USA, for
% the R2P2 fine tracking system.

!delete thbode.met

!delete tbode.met

% Enter the Transfer Functions For The Network

numm=(78.95 157.91); %MID sensor
denm=(l 12.57 157.91);
numq=(O 3947.8]; %Gyro sensor
deng=(1 62.83 3947.8);
w= logspace(-2,3) ; %frequency range

Enter Kalman Values

I = eye(5);
wg = 10*2*pi; %Gyro break freq
wm = 2*2*pi; %MHD break freq
dt = .0005; %Sample ratye
A (0 0 0 0 0;

0 0 1 0 0;
wg^2 -wg^2 -2*wg 0 0;
0 0 0 0 1;
wimn2 0 0 -wi'2 -2*wm);

B = (0 0 le-5 0 le-5]';
Q = (le-5)^2*I;
R= [(1.237e-6)^2 0;0 (75e-6)^2);
H (0 1 0 0 0;0 0 0 1 .51;
[phi,dell = c2d(A,B,dt);
L = (0 0 1 0 1]';
D = (0 0;0 0;0 0;0 0;0 0];

Bode for Kalman

G = dlqe(phi,l,H,Q,R);
(numkl,denkil = ss2tf(phi+G*H,G,I,D,l);
(numk2,denk?] = ss2tf(phi+G*H,G,I,D,2);

% ** Combine Transfer Functions **

nutl = conv(numg,numkl(l,:)) + conv(numm,numk2(l,:));
nut2 = conv(numg,numkl(2,:)) + conv(numm,numk2(2,:));
nut3 = conv(numgnumkl(3,:)) + conv(numm,numk2(3,:));
nut4 = conv(numg,numkl(4,:)) + conv(numm,numk2(4,:));
nut5 = conv(numg,numkl(5,:)) + conv(numm,numk2(5,:));
det = conv(deng,denkl) + conv(denmdenk2);
%nutl = numkl(l,:);
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%nut2 =nurnkl(2,:);
%nut3 = numkl(3,:);
%nut4 = numkl(4,:);
%nut5 = numkl(5,:);

% Calculate Bode Frequency Response

(maql,phasel]= bode(nutl,det~w);
(mag2,phase2j= bode(nut2,det,w);
[ma93,phase3J= bode(nuti,det~w);
[mag4,phase4]= bode(nut4,det~w);
[ma95,phase5]= bode(nut5,det,w);
cig
semilogx(w,2O*logIO(magl)),title('KALMAN Blending Scheme (State Xl)')
xlabel('Frequency') ,ylabel('Magnitude (db) ') ,grid
meta thbode
pause
%semilogx(w,phasel),title('KALMAN Blending Scheme (Xl)')
%xlabel('Frequenc-y'),ylabel('Phase (deg)'),grid
%pause
%meta
semilogx(w,2OkloglO(mag2)),title('KAL4AN Blending Scheme (X2)')
xlabel('Frequency'),ylabel('Magnitude (db) ') ,grid
me ta
pause
%semilogx(w,phase2) ,title('KALMAN Bl~ending Scheme(X2) ')
%xlabel('Frequency'),ylabel('Phase (deg) '),grid
%meta
%pause
semilogx(w,20*loglo(mag3)),title('KALMAtI Blending Scheme(XJ)')
xlabel('Frequency') ,ylabel('Magnitude (db) '),grid
meta
pause
%semilogx(w,phase),title('KALMAN Blending Scheme(X3) ')
'xlabel('Frequency') ,ylabel('Phase (deg) ') ,grid
%mneta
%pause
semilogx~w,20*loglo(mag4)),title(IKALMAN Blending Scheme(X4)')
xlabel('Frequency') ,ylabel('Magnitude (db) ') ,grid
meta
pause.
%sevvilogx(w,phase4),title('KALMAN Blending Scl~eme (X4)1)
%xlabel('Frequency') ,ylabel('Phase (deg)') ,qrid
%meta
%pause
semilogx(w,20*loglo(mag5)),title(IKALMAN Blending Scherme(X5)')
xlabel('Frequency') ,ylabel('Magnitude (db) ') ,grid
meta
%pause
%semilogx(w.,phase5) ,title('KALMAN Blending Scheme (X5)1)
%xlabel('Frequency') ,ylabel('Phase (deg) ') ,grid
%meta
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% TIIESBDE.M 1 NOV 89

%MATL.AB simulation of Martin Marietta's signal blending

%scheme. Developed by the R2/P2 Control Group in Denver,
% Colorado.

% Enter the Transfer Functions For The Network An(' Blender

numm=(l 0 0]; %MIID sensor
,I'nm=(l 12.57 157.91];
...nmf=CI 0 0]; %MHD filter
denmf=(l 62.8 3944);
numg=[3947.8]; %Gyro sensor
deng=[l 62.83 3947.8];
numgf=(157.8); %Gyro filter
dengf=fl 12.56 157.8);
numbl=f 398 30000 3.77e5 3.94e6); %Blender
denbl=[l 1062.8 66744 3.94e6];
w= logspace(-2,3) ; %frequency range

% Combine Transfer Functions Along Branches

nurmt=conv(numm,nummf)
denmt~rconv(denm,denmf);
cl=conv(numg,numgf)
c2-conv(deng,dengf)
numgt=conv (cl, numbl)
dengt=conv(c2,denbl);

ldifl= length(numgt) -length(nummt);

if ldifl >=0
nummt = [zeros~l,ldifl) nummtJ;

else
numgt =[ zeros~l,abs(ldifl)) numgt];

end
ldif2= length(dengt) - length(denmt);
if ldif2 >=0

denmt = [zeros(l,ldif2) denmt];
e 1 s~e

dengt =( zeros(l,abs(ldif2)) dengt];
end

numeq=nummt +numgt; %sum of the sensors
deneq=dennt+dengt;

% Calculate Bode Frequency Response

(rnag,phase]= bode(numeq,deneq,w);
clg
semilogx(w,20*loglO(mag)),title'KMAG Blending Scheme')
xlabel('Frequency') ,ylabel('Magnitude (db) ') ,grid
meta tbode
pause
semilogx(w,phase),title('MMAG Blending Scheme')
xlabel('Frequency'),ylabel('Phase (deg)'),grid
meta

T I



THESC2D.m 8 DEC 1989

% This program converts the transfer functions to state space
reprensentations. It will then discretize the state space
representation.

Enter transfer functions

numl=[0 0 3947.8);
denl=[l 88.844 3947.8];
num2=[l 0 0];
den2=[1 12.57 157.91];
[al,bl,cl,dl]=tf2ss(numl,denl);
[a2,b2,c2,d2]=tf2ss(num2,den2)

% Convert to discrete time

dt=0.005;
[phil,dell]=c2d(al,bl,dt)
[phi2,del2)=c2d(a2,b2,dt)

% Find discrete 5x5 for whole system

a=O 1 0 0 0
-3947.8 -88.844 0 0 0
00010
0 0 -157.91 -12.57 0
0 0 0 0 -1000];

b=[O -3947.8 0 -157.91 1000]';

[phi,del]=c2d(a,b,dt);

phit=phil+phi2;
delt=dell+del2;
at=al+a2;
bt=bl+b2;
ct=cl+c2;
dt=dl+d2;
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